Lesson Plan Template

Grade: Algebra I				Subject: Math		
Materials: headphones and notes				Technology Needed: Personal computer		
Instructio \square Direct \square Guid \square Socratic \square Learn \square Lecture \square Tech \square Othe	Strategies: instruction practice ic Seminar ing Centers logy integration (list)		Peer teaching/collaboration/ cooperative learning Visuals/Graphic organizers PBL Discussion/Debate Modeling	$\square \quad$ Large group activity Independent activity Pairing/collaboration Simulations/Scenarios Other (list) Explain:	Hands-on Technology integration Imitation/Repeat/Mimic	
Standard(s) 8.EE. 7 Sol	linear equation		variable.	Differentiation Below Proficiency: Students who are below proficiency will be able to make the first step to find the solution. Above Proficiency: Students who are above proficiency will be able to solve problems without questions and will be able to state what they are doing. Approaching/Emerging Proficiency: Students would be able to solve the problems with relative ease but may not quite be able to state what they are doing. Modalities/Learning Preferences:		
Objective(s) By the end of the lesson I want my students to know how to solve multi-step equations with one variable. Multi step includes having problems with multiplication or division and addition or subtraction. Bloom's Taxonomy Cognitive Level: Analyze Evaluate						
Classroom Students room will spread th	Management- (g ill watch the vid have tables where materials out a		s), movement/transitions, etc.) der to learn the content. The tudents can sit in order to efficiently.	Behavior Expectations- (systems, strategies, procedures specific to the lesson, rules and expectations, etc.) Students will work on their assignments by themselves and ask for help by raising their hand when needed. They will work at their own pace through the lessons and do the required assessments when the website tells them		
Minutes	Procedures					
30	Set-up/Prep: Making of the video and getting other assignments ready.					
2	Engage: (opening activity/ anticipatory Set - access prior learning / stimulate interest /generate questions, etc.) I will have some frontloading and reminders for students for information that they need to know before the start of the lesson. This includes; like terms, distribution, inverse operations and reciprocals.					
10	Explain: (concepts, procedures, vocabulary, etc.) I will go through my notes in the video recording and show many examples for the students. (Notes on next page)					

Tech file if deleted.
- Today we are going to work with equations that require more then one step to solve for the variable. Today there are a few things you need to recall. \(\backslash v s\{0\}\) Like terms-remember when we are trying to simplify equations we will need to combine terms that have the same coefficient attached to it. Terms like \(\$ 2 \mathrm{x} \$\) and \(\$ 4 \mathrm{y} \$\) would not be like terms, but terms like \(\$ 3 \mathrm{z} \$\) and \(\$ 7 \mathrm{z} \$\) can be combined because these terms have the same coefficient of z . \(\mathrm{Vs}\{0\}\) 2. Distribution- Remember what you must do if you see \(\$ 2(\mathrm{x}-3) \$\).
Because of the parenthesis we must multiply the \(\$ 2 \$\) in front by both terms in the parenthesis. Doing this we get \(\$ 2 \mathrm{x}-6 \$ \operatorname{lvs}\{0\} 3\). Inverse operations-Remember that inverse operations are operations that "undo" another. For example if I have \(\$ x+2=0 \$\), subtracting \(\$ 2 \$\) would give us \(\$ x=-2 \$\). Division and multiplication work in the same way. \(\operatorname{lvs}\{0\} 4\). Reciprocal- the is fraction that when multiplied to another is 1 . For example if you have \(\$ \backslash\) frac \(\{3\}\{2\} \$\) the reciprocal would be \(\$ \backslash\) frac \(\{2\}\{3\} \$\) because if we multiply the two fractions together we have a product of \(1 . \backslash \mathrm{vs}\{2\}\)
- \$3z+4z-5=23\$ \vs \(\{0\} \$ z=4 \$ \backslash v s\{2\}\)
- \$4x-2x+5=15\$ \(\operatorname{vvs}\{0\} \$ x=5 \$ \backslash v s\{2\}\)
- \$4w+2(w+5)=70\$ \(\operatorname{lvs}\{0\} \$ w=10 \$ \backslash v s\{2\}\)
- \$7x-3(x+5)=33\$ \vs \(\{0\} \$ x=12 \$ \backslash v s\{2\}\)
item[5] \$4+2(y-3)=89\$ \vs \(\{0\} \$ \mathrm{y}=\backslash \operatorname{frac}\{91\}\{2\} \$ \operatorname{lvs}\{2\}\)
- \$5-3(v+7)=-1\$ \(\operatorname{vvs}\{0\} \$ \mathrm{v}=-5 \$ \operatorname{lvs}\{2\}\)
- \$ \(\backslash \operatorname{frac}\{2\}\{3\}(\mathrm{z}-9)=2 \$ \backslash \mathrm{vs}\{0\} \$ \mathrm{z}=12 \$ \backslash \mathrm{vs}\{2\}\)
- \$ \(\backslash\) frac \(\{10\}\{8\}(\mathrm{k}+16)=120 \$ \operatorname{lvs}\{0\} \$ \mathrm{k}=80 \$ \operatorname{lvs}\{2\}\)
- \$2j+5+\frac \(\{4\}\{3\}(3 j-12)=7 \$ \backslash \mathrm{vs}\{0\} \$ j=3 \$\)

